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Three branches of modern mathematics make something of infinitesimals per se,
namely, nonstandard analysis, synthetic differential geometry, and supergeometry.
The first is concerned exclusively with invertible infinitesimals, whereas the
second deals mainly with nilpotent ones. Both of the former two are engaged
exclusively in commuting or bosonic infinitesimals, while the third treats
anticommuting or fermionic ones, leading to so-called noncommutativ e
mathematics. the unification of the first two approaches was nicely discussed by
Moerdijk and Reyes, but the unification of the second and the third seems to
remain open. The principal objective of this paper is to fill the gap, arguing that
a super version of microlinear space, dubbed ª supermicrolinear space,º is a natural
generalization of supermanifold, just as the synthetic concept of microlinear space
is replacing the classical concept of smooth manifold. The central result of
the paper is that the graded tangency of a supermicrolinear space forms a Lie
superalgebra, while it is well known that the tangency of a microlinear space
(i.e., its totality of vector fields) forms a Lie algebra.

0. INTRODUCTION

God created infinitesimals for mathematicians. Newton, Leibniz, and

their contemporaries were so pious as to believe in them. However, most

modern mathematicians are too atheistic and secular to accept them, preferring

to try to couch every infinitesimal argument in their favorite e 2 d terms.

For all their efforts, modern mathematical iconoclasts have never suc-

ceeded in eradicating the shadows of infinitesimals. On the contrary, the tide
has gradually been turning back for decades. The resurrection of infinitesimals

can be seen in three arenas of modern mathematics, all of which have been

developing for the latter half of this century. Leibniz’ doctrine that differential

and integral calculus should be developed within a number system containing

infinitely small as well as infinitely large numbers besides finite ones was
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seriously taken up by Robinson in the 1960s. By using the techniques of

model theory, he succeeded in constructing models of such number systems.

His approach came to be known as nonstandard analysis, or more generally,

as nonstandard mathematics, for which the reader is referred, e.g., to Stroyan

and Luxemburg (1976).

Taking into account Grothendieck’ s treatment of nilpotent infinitesimals

in his theory of schemes and Ehresmann’ s treatment of higher infinitesimals

in his theory of jets, Lawvere proposed in the mid-1960s to build a formal

differential geometry in which nilpotent and higher infinitesimals are coher-

ently available in abundance. The enunciated geometry was known as syn-

thetic differential geometry, in which such once-dubious expressions of

standard differential geometry as ª vector fields are infinitesimal transforma-

tionsº retrieve their truly infinitesimal meanings. There microlinear spaces

play the role of smooth manifolds in standard differential geometry. Calcula-

tion in coordinates in the standard theory of smooth manifolds is replaced

by calculation of polynomials of infinitesimals followed by construction of

corresponding quasi-colimit diagrams of small objects. Synthetic differential

geometry is by no means a mere reformulation of standard differential geome-

try. What is a truism in the standard context often becomes a challenge in

the synthetic context (e.g., the Jacobi identity of vector fields with respect

to Lie brackets). For textbooks on synthetic differential geometry the reader

is referred to Kock (1981), Lavendhomme (1996), and Moerdijk and

Reyes (1991).

The last arena of modern mathematics in which we can witness the

comeback of infinitesimals is supergeometry, championed by Berezin (1987),

Kostant (1977), Manin (1988), and others, whose main concern was to provide

a mathematical framework for bosons and fermions on an equal footing.

Supergeometry lies at the entrance to noncommutative mathematics in the

sense that the Z 2-graded ring R of real supernumbers is not commutative, but

only graded commutative. It borders on two principal branches of geometry,

namely algebraic and differential geometries. The Russian school, inspired

by the glory of algebraic geometry, prefers to get a super version of the

smooth manifold by extending the structure sheaf of a smooth manifold to a

sheaf of Z 2-graded commutative algebras while retaining the smooth manifold

itself as a supporting structure. On the other hand, DeWitt (1984), Rogers

(1980, 1986), and others are biased in favor of differential geometry, replacing

the set of real numbers by a Grassmann algebra and aping the theory of

Banach manifolds. Physically speaking, the former approach retains the classi-

cal concept of space-time, but enlarges the set of observables, while the

latter approach reconsiders the conventional notion of space-time itself. The

reconciliation between the two approaches to supergeometry was discussed
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by Batchelor (1980). The two approaches were reviewed and elaborated in

Bartocci et al. (1991).

The scope of nonstandard analysis has been confined to invertible infini-
tesimals. Although synthetic differential geometers have succeeded in dealing

with invertible and nilpotent infinitesimals on an equal footing (Moerdijk

and Reyes, 1991, Chapters VI and VII), they have been content with treating

commuting or bosonic infinitesimals exclusively. However, if synthetic differ-

ential geometry is to cope with modern physics (e.g., modern physical theories

of supergravity), it has to encompass anticommuting or fermionic infinitesi-
mals besides commuting or bosonic ones. The principal concern of this paper

is to take a first step in this direction, letting synthetic differential geometry

deal with both commuting and anticommuting infinitesimals on an equal

footing. Tangency is a more elusive matter in supergeometry than in bosonic

geometry (Boyer and Gitler, 1984; Jadczyk and Pilch, 1981; Rothstein, 1986),

and we believe that our synthetic approach to supergeometry could say
something about it.

Just as microlinear spaces play a significant role in classical synthetic

differential geometry, supermicrolinear spaces will occupy a fundamental

position in our synthetic differential supergeometry. Calculation of polynomi-

als of infinitesimals should be replaced by calculation of graded polynomials
of infinitesimals. The general Kock axiom is to be replaced by its super

version. These points will be discussed in Section 2. Section 1 reviews basic

superalgebra, for which the reader is referred, e.g., to Leites (1980) or Manin

(1988, Chapter 3). Section 3 is devoted to differential calculus, up to a simple

super version of Taylor ’ s formula. Tangency will be discussed in Section 4,

though a proof of the main result that the totality of supervector fields on a
supermicrolinear space forms a Lie superalgebra is relegated to the succeeding

section. Section 5 is devoted to establishing the general graded anticommuta-

tivity and the general graded Jacobi identity as in Kock and Lavendhomme

(1984) and Nishimura (1997b). In a subsequent paper (Nishimura, n.d.) we

will discuss the semantic aspect of synthetic differential supergeometry in

the spirit of Moerdijk and Reyes (1991).
As is usual in synthetic differential geometry, the reader should presume

throughout the paper that we are working in a (not necessarily Boolean)

topos, so that the excluded middle and Zorn’ s lemma have to be avoided.

Objects of the topos go under such aliases as a ª space,º a ª set,º etc.

1. BASIC SUPERALGEBRA

Let Z denote the set of integers, whose elements are usually written

i, j, k, . . . , with or without subscripts. Let Z 2 denote the set of integers mod

2, whose elements are usually written p, q, r, . . . , with or without subscripts.
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We denote 0 mod 2 by 0, and 1 mod 2 by 1. Both Z and Z 2 are commutative

rings in standard sense.

A superring is a (not necessarily commutative) ring R with unity 1
whose underlying additive group is decomposed into two subgroups R e and

R o, called the even and odd parts of R , respectively, such that:

(1.1) If a and b of R are both even or both odd, then ab is even.

(1.2) Otherwise ab is odd.

In short, a superring is a Z 2-graded ring. Given a superring R , we will often
wrote R 0 for R e and R 1 for R o. We say that R is graded commutative if for

any a P R p and any b P R q.

(1.3) ab 5 ( 2 1)pqba

Now we choose, once and for all, a graded commutative superring R
intended to play the role of real numbers in our supermathematics. We have

the following axiom:

(1.4) R is a graded commutative superring.

A left R -supermodule is a left R -module M whose underlying abelian

group is decomposed into even and odd parts Me and Mo (also written M 0

and M 1) respectively, such that

(1.5) If a P R p and u P M q, then au P M p+q.

The notion of a right R -supermodule is defined similarly. It is a truism

that R can canonically be regarded as both left and right R -supermodules.
It is well known that every left R -supermodule M can be regarded as a right

R -supermodule in the sense that for any a P R p and any u P M q,

(1.6) ua 5 ( 2 1)pqau

By the same token every right R -supermodule can be regarded as a left R -

supermodule, so that we can feel free to use the term ª R -supermoduleº
without the ª leftº or ª right.º Each element u of an R -supermodule M is

decomposed uniquely into even and odd parts ue and uo, so that u 5 ue 1
uo with ue P Me and uo P Mo. If u is even or odd, then it is called pure,

with ) u ) defined to be 0 or 1 according as u P Me or u P Mo.

An R -superalgebra is an R -algebra which is a superring and an R -

supermodule with respect to the same Z 2-grading. An example of an R -
superalgebra is the totality of R -valued functions on a set with componentwise

operations, in which its even and odd elements are R e-valued and R o-valued

ones. A homomorphism of R -superalgebras is a homomorphism of their

underlying R -algebras preserving Z 2-grading. Given two R -superalgebras A
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and B, we will often write SpecB A for the set of homomorphisms of R -

superalgebras from A to B.

The polynomial R -superalgebra R [x1, . . . , xn] of variables x1, . . . , xn

with each of the variables being named as either even or odd is the graded

commutative R -superalgebra freely generated by x1, . . . , xn over R . It is

characterized by the following universal property (Manin, 1988, Chapter 3,

§2, Item 5).

Proposition 1.1. For any graded commutative R -superalgebra A and any

pure elements a1, . . . , an of A with ) ai ) 5 ) xi ) (1 # i # n), there exists a

unique homomorphism w of R -superalgebras from R [x1, . . . , xn] to A such

that w (xi) 5 ai (1 # i # n).

An ideal I of an R -superalgebra A is called a superideal of A if both
the even and odd parts of each element of I belong to I.

A Lie superalgebra (over R ) is an R -supermodule L with a mapping

[ ? , ? ]: L 3 L ® L such that for any u, v, w P L and any a P R :

(1.7) [u 1 v, w] 5 [u, w] 1 [v, w]
(1.8) [au, v] 5 a[u, v]

(1.9) [u, v 1 w] 5 [u, v] 1 [u, w]

(1.10) [u, va] 5 [u, v]a
(1.11) [u, v] 5 ( 2 1) ) u ) ) v ) [v, u] provided that both u and v are pure

(1.12) [u, [v, w]] 1 ( 2 1) ) v ) ( ) v ) 1 ) w ) )[v, [w, u]] 1 ( 2 1) ) w ) ( ) u ) 1 ) v ) )[w, [u, v]]

5 0 provided that u, v, and w are all pure

Conditions (1.11) and (1.12) are called the graded anticommutativity
and the graded Jacobi identity, respectively.

Given an R -superalgebra A, an even (odd, resp.) R -left-derivation is an

operation X on A acting from the left such that for any u, v P A and for any
a P R ,

(1.13) X(u 1 v) 5 Xu 1 Xv
(1.14) X(ua) 5 (Xu)a
(1.15) X(uv) 5 (Xu)v 1 ( 2 1) ) u ) ) X ) u(Xv) provided that u is pure and ) X )

is 0 or 1 according as X is even or odd

An even (odd, resp.) R -right-derivation is an operation X on A acting

from the right such that for any u, v P A and for any a P R :

(1.16) (u 1 v)X 5 uX 1 vX
(1.17) (au)X 5 a(uX )

(1.18) (uv)X 5 u(vX ) 1 ( 2 1) ) v ) ) X ) (uX )v provided that u is pure and

) X ) is 0 or 1 according as X is even or odd.
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2. WEIL SUPERALGEBRAS AND SUPERMICROLINEARITY

A Weil superalgebra is a local graded commutative R -superalgebra }
which, regarded as an R -module, is finite-dimensional and can be written as
} 5 R 1 m (the first component is the R -superalgebra structure and the

second is the maximal superideal in }). By way of example, the quotient

superalgebra of the polynomial superalgebra R [x1, . . . , xn] with respect to

the superideal generated by {xi xj ) 1 # i # n} is a Weil superalgebra and is

denoted by }(p1, . . . , pn) with pi 5 ) xi ) (1 # i # n). Given Weil superalgebras
}1 and }2 with maximal superideals m1 and m2, respectively, a homomor-

phism of R -superalgebras w : }1 ® }2 is said to be a homomorphism of
Weil superalgebras if it preserves maximal superideals, i.e., if w ( m1) , m2.

A finite limit diagram of R -superalgebras is said to be a good finite limit
diagram of Weil superalgebras if every object occurring in the diagram is

a Weil superalgebra and every morphism occurring in the diagram is a
homomorphism of Weil superalgebras. The diagram obtained from a good

finite limit diagram of Weil superalgebras by taking Spec R is called a quasi-
colimit diagram of supersmall objects.

The super version of the general Kock axiom, called the general super-
Kock axiom, goes as follows:

(2.1) For any Weil superalgebra }, the canonical R -superalgebra

homomorphism } ® R Spec R (}) is an isomorphism.

Spaces of the form Spec R (}) for some Weil superalgebras } are called

superinfinitesimal spaces or supersmall objects. The superinfinitesimal space

corresponding to Weil superalgebra }(p1, . . . , pn) is denoted by D(p1, . . . ,

pn). In particular, D, D(0), and D(1) are denoted also by 1, D, and D,
respectively. As examples, by Proposition 1.1, D, D, and D(0, 1) are to be

identified with {d P R e ) d 2 5 0}, {d P R o ) d 2 5 0}, and {(d1, d2) P R e 3
R o ) d 2

1 5 d 2
2 5 d1d2}, respectively. It is easy but interesting to see that D 5

R o, from which and the general super-Kock axiom it follows that every

function from R o to R is linear (Dewitt, 1984, Exercise 1.1). Given p P Z 2,
Dp denotes D or D according as p is 0 or 1.

The superinfinitesimal space D(0,1) will play a very important role in

our discussion of tangency. First we note that D(0, 1) can be identified with

the subset of R consisting of all d P R such that d 2
e 5 d 2

o 5 dedo 5 0. Under

this identification (d1, d2) P D(0, 1) corresponds to d1 1 d2 P R . What

concerns us most about D(0, 1) is that the space D(0, 1), regarded as a subset
of R , is closed under the left and right actions of R on itself, while D and

D are not. More specifically, given a P R and (d1, d2) P D(0, 1), a(d1, d2),

and (d1, d2)a go as follows:

(2.2) a(d1, d2) 5 (aed1 1 aod2, aod1 1 aed2)
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(2.3) (d1, d2)a 5 (d1ae 1 d2ao, d1ao 1 d2ae)

The following proposition is a simple, but intriguing application of the

general super-Kock axiom.

Proposition 2.1. A function f : D(0, 1) ® R is of the form d P D(0, 1)
j ad P R with some a P R iff it satisfies the following condition:

(2.4) f (db) 5 f (d)b for any b P R and any d P D(0, 1)

Proof. Trivially the only-if part obtains. If f satisfies (2.4), then f (0) 5
0, so that by the general super-Kock axiom there exist a1, a2 P R such that

(2.5) f (d1, d2) 5 a1d1 1 a2d2 for any (d1, d2) P D(0, 1)

We now consider two functions from D(0, 1) 3 D to R , namely, g1:

(d, e) P D(0, 1) 3 D j f (de) and g2: (d, e) P D(0, 1) 3 D j f (d )e, which

go as follows:

(2.6) g1(d1, d2, e) 5 a1d2e 1 a2d1e for any (d1, d2) P D(0, 1) and

any e P D
(2.7) g2(d1, d2, e) 5 a1d1e 1 a2d2e for any (d1, d2) P D(0, 1) and

any e P D

Since g1 5 g2 by condition (2.4), a1 5 a2 by the general super-Kock axiom,

so that the desired a is to be taken to be a1 5 a2. This completes the proof. n

The reader should note that a in the above proposition is uniquely
determined by the general super-Kock axiom. The proposition has the follow-

ing important generalization.

Proposition 2.2. A function f : D(0, 1)n ® R is of the form (d1, . . . ,

dn) P D(0, 1)n j ad1 . . . dn with some a P R iff it satisfies the following

conditions:

(2.8) f (d1, . . . , dkb, dk+1, . . . , dn) 5 f (d1, . . . , dk, bdk+1, . . . , dn) for
any (d1, . . . , dn) P D(0, 1) for any b P R (1 # k # n 2 1)

(2.9) f (d1, . . . , dnb) 5 f (d1, . . . , dn)b for any (d1, . . . , dn) P
D(0, 1) and any b P R

Proof. The proof is carried out by induction on n. The case that n 5 1

was dealt with in Proposition 2.1. Suppose, for induction, that the proposition

holds for n 2 1. For any (d1, . . . , dn 2 1) P D(0, 1)n 2 1 the function d P
D(0, 1) j f (d1, . . . , dn 2 1, d ) satisfies the condition (2.3), so that there exists

a unique function g: D(0, 1)n 2 1 ® R such that

(2.10) f (d1, . . . , dn) 5 g(d1, . . . , dn 2 1)dn for any (d1, . . . , dn) P
D(0, 1)n
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It is easy to see that the function g satisfies conditions (2.8) and (2.9) in the

case of n replaced by n 2 1. Therefore, by the induction hypothesis, there

exists a P R such that

(2.11) g(d1, . . . , dn 2 1) 5 ad1 . . . dn 2 1 for any (d1, . . . , dn 2 1) P
D(0, 1)n 2 1

The desired conclusion now follows from (2.10) and (2.11). n

The reader should note again that a in the above proposition is determined

uniquely by the general super-Kock axiom.

Just as the general Kock axiom paved the way for the introduction of

microlinear spaces, its super version invokes the notion of a supermicrolinear
space, which is by definition a space M satisfying the following condition:

(2.12) For any good finite limit diagram of Weil superalgebras with

its limit W, the diagram obtained by taking Spec R and then

exponentiating over M is a limit diagram with its limit
MSpec R W.

The following proposition guarantees that we have many supermicro-

linear spaces.

Proposition 2.3. (1) R e and R o are supermicrolinear spaces.

(2) The class of supermicrolinear spaces is closed under limits and

exponentiation by an arbitrary space.

Proof. Statement (1) follows directly from axiom (2.1), while Statement

(2) can be established in the way as in Lavendhomme (1996, §§2.3, Proposi-
tion 1). n

Proposition 2.4. The diagram

Dp

½
½
¯

j1
p,q

½½
½¯
0 m

p,q

1 ® Dp 3 Dq Ð ® Dp 1 q

-
½
½

j2
p,q

½
½½¯

Dq

is a quasi-colimit diagram of supersmall objects, where

(2.13) j1
p,q

(d ) 5 (d, 0) for any d P Dp

(2.14) j2
p,q

(d ) 5 (0, d ) for any d P Dq

(2.15) m
p,q(d1, d2) 5 d1d2 for any (d1, d2) P Dp 3 Dq
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Proof. As in Lavendhomme (1996, §2.2, Proposition 7). n

Corollary 2.5. Let M be a supermicrolinear space and m P M. Let g
be a function from Dp 3 Dq to M such that g (d1, 0) 5 g (0, d2) 5 m for any

d1 P Dp and any d2 P Dq. Then there exists a unique function d : Dp 1 q ®
M such that g (d1, d2) 5 d (d1d2) for any (d1, d2) P Dp 3 Dq.

Proposition 2.6. The diagrams

0
1 Ð Ð ® Dq

½
½
¯

½
½
¯

0 i2
p,q

Dp Ð Ð ® D(p, q)
i
p,q
1

0
1 Ð Ð ® D(0, 1)

½
½
¯

½
½
¯

0 i(0,1)
2

2

D(0, 1) Ð Ð ® D(0, 1, 0, 1)
i(0,1 )

2

1

are quasi-colimit diagrams of supersmall objects, where

(2.16) ip,q
1 (d ) 5 (d, 0) for any d P Dp

(2.17) ip,q
2 (d ) 5 (0, d ) for any d P Dq

(2.18) i(0,1)2
1 (d1, d2) 5 (d1, d2, 0, 0) for any (d1, d2) P D(0, 1)

(2.19) i(0,1)2
2 (d1, d2) 5 (0, 0, d1, d2) for any (d1, d2) P D(0, 1)

Proof. As in Lavendhomme (1996, §2.2, Proposition 6). n

We will often denote i0,0
k and i1,1

k by i02

k and i1
2

k , respectively (k 5 1, 2).

Corollary 2.7. Let M be a supermicrolinear space and m P M. For any
functions g 1: Dp ® M and g 2: Dq ® M with g 1(0) 5 g 2(0) 5 m, there exists

a unique function lp,q
( g 1, g 2): D(p, q) ® M such that lp,q

( g 1, g 2) + i p,q
1 5 g 1 and

lp,q
( g 1, g 2) + i p,q

2 5 g 2. For any functions d 1, d 2: D(0, 1) ® M with d 1(0, 0) 5
d 2(0, 0) 5 m, there exists a unique function l(0,1)2

( d 1, d 2): D(0, 1, 0, 1) ® M such

that l(0,1)2
( d 1, d 2) + i (0,1)2

1 5 d 1 and l(0,1)2
( d 1, d 2) + i (0,1)2

2 5 d 2.
We will often denote l0,0

( g 1, g 2) and l1,1
( g 1, g 2) by l0

2

( g 1, g 2) and l1
2

( g 1, g 2), respectively.

3. DIFFERENTIAL CALCULUS

The super version of the Kock±Lawvere axiom, which is subsumed

under the super version of the general Kock axiom discussed in the previous

section, goes as follows:
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(3.1) For any function f : D ® R , there exists a unique b P R such

that f (d ) 5 f (0) 1 bd for any d P D.

(3.2) For any function g: D ® R , there exists a unique c P R such
that g(d ) 5 g(0) 1 cd for any d P D.

Axioms (3.1) and (3.2) are equivalent to the following two axioms:

(3.3) For any function f : D ® R , there exists a unique b8 P R such

that f (d ) 5 f (0) 1 db8 for any d P D.

(3.4) For any function g: D ® R , there exists a unique c8 P R such

that g(d ) 5 g(0) 1 dc8 for any d P D.

These axioms as a whole are called the super-Kock± Lawvere axiom. The
main objective of this section is to discuss some consequences of this axiom

without assuming the general super-Kock axiom. It is easy to see the following:

Proposition 3.1. The relation between b in (3.1) and b8 in (3.3) is simple

enough; b 5 b8 for the same function f : D ® R . The relation between c in
(3.2) and c8 in (3.4) is a bit less simple; c8e 5 ce and c8o

5 2 co for the same

function g: D ® R .

Given a function f : R e ® R and a P R e, by one of the equivalent

axioms (3.1) and (3.3), there exist unique (
-

D e f )(a) P R and unique
( fD

¤
e)(a) P R such that for any d P D,

(3.5) f (a 1 d ) 5 f (a) 1 d(
-

D e f )(a)
f (a 1 d ) 5 f (a) 1 ( fD

¤
e)(a)d(3.6)

The functions a P R e
j (

-
D e f )(a) and a P R e

j (D
¤

e f )(a) are denoted by
-

D e f and fD
¤

e, respectively. Since they coincide by Proposition 3.1, they are

often denoted unambiguously by De f.

Proposition 3.2. Let f and g be functions from R e to R . Let a P R .

Then we have

(3.7) De( f 1 g) 5 De f 1 Deg
(3.8) De(af ) 5 a(De f )

(3.9) De( fa) 5 (De f )a
(3.10) De( fg) 5 (De f )g 1 f (Deg)

In short, De is an even (both left- and right-) R -derivation on the R -superalge-

bra of functions from R e to R .

Proof. As in Lavendhomme (1996, §1.2, Proposition 1). n

Given a function f : R o ® R and a P R o, by one of the equivalent

axioms (3.2) and (3.4), there exist unique (
-

D o f )(a) P R and unique
( fD

¤
o)(a) P R such that for any d P D,
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(3.11) f (a 1 d ) 5 f (a) 1 d(
-

D o f )(a)
f (a 1 d ) 5 f (a) 1 ( fD

¤
o)(a)d(3.12)

The functions a P R o
j (

-
D o f )(a) and a P R o

j (D
¤

o f )(a) are denoted by
-

D o f and fD
¤

o, respectively.

Proposition 3.2. Let f and g be functions from R o to R . Let a P R .

Then we have

(3.13)
-

D o( f 1 g) 5
-

D o f 1
-

D og
(3.14) ( f 1 g)D

¤
o 5 fD

¤
o 1 gD

¤
o

(3.15) (af )D
¤

o 5 a( fD
¤

o)

(3.16)
-

D o( fa) 5 (
-

D o f )a
(3.17)

-
D o( fg) 5 (

-
D o f )g 1 ( 2 1) ) f ) f (

-
D og) provided that f is pure

(3.18) ( fg)D
¤

o 5 ( 2 1) ) g ) ( fD
¤

o)g 1 f (gD
¤

o) provided that g is pure

In short,
-

D o is an odd R -left-derivation on the R -superalgebra of functions
from R o to R , while D

¤
o is an odd R -right-derivation on it.

Proof. As in Lavendhomme (1996, §1.2, Proposition 1). n

Proposition 3.4. Let f be a function from R o to R . Then

-
D o(

-
D o f ) 5

-
D o( fD

¤
o) 5 (

-
D o f )D

¤
o 5 ( fD

¤
o)D

¤
o 5 0(3.19)

Proof. Since D 5 R o, this follows directly from one of the equivalent

axioms (3.2) and (3.4). n

Now we would like to discuss a simple variant of Taylor’ s formula for

a function f : R p1 3 ? ? ? 3 R pn ® R with (p1, . . . , pn) P Z n
2. We denote by

-¤/ - xi the operator D
¤

e or D
¤

o with respect to the ith component according as
pi is 0 or 1 (1 # i # n). The formula goes as follows:

Theorem 3.5. Let a P R p1 3 ? ? ? 3 R pn. Then there exists unique

bk,i1...ik P R for each k (0 # k # n) and each sequence 1 # i1 , ? ? ? , ik #
n such that for any d 5 (d1, . . . , dn) P Dp1 3 ? ? ? 3 Dpn,

(3.20) f (a 1 d ) 5 a0 1 o
n

i 5 1

b1,idi 1 o
i1 , i2

b2,i1i2di1di2

1 ? ? ? 1 o
1 # i1 , ? ? ? , ik # n

bk,i1...ikdi1 . . . dik 1 ? ? ?

1 bn,1...nd1 . . . dn
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More specifically, we have

(3.21) bk,i1...ik 5 1 f -¤

- xk

? ? ?
-¤

- x1 2 (a)

Proof. As in Lavendhomme (1996, §§1, 2.2). n

4. GRADED TANGENCY

Let M be a supermicrolinear space and m P M. These entities shall be
fixed throughout this and the next sections. A supervector tangent to M at
m is a mapping t: D(0, 1) ® M with t(0, 0) 5 m. Now we would like to

endow the set Tm M of tangent supervectors to M at m with an R -supermodule

structure. The set Tm M is called the graded tangent space of M at m. The

left product a ? t of t P Tm M by a P R and the right product t ? b of t by

b P R are defined by the following formulas:

(4.1) (a ? t)(d ) 5 t(da)

(4.2) (t ? b)(d ) 5 t(bd )

for any d P D(0, 1). Given t1, t2 P Tm M, their sum t1 1 t2 is defined to be

(4.3) (t1 1 t2)(d ) 5 l(0,1)2
(t1,t2)(d, d )

for any d P D(0, 1).

Proposition 4.1. With the above operations the set Tm M is an R -
bimodule.

Proof. As in Lavendhomme (1996, §3.1, Proposition 1). n

Proposition 4.2. The R -bimodule Tm M is Euclidean in the sense that it

satisfies the following conditions:

(4.4) For any function f : D ® Tm M, there exists a unique t P Tm M
such that f (d ) 5 f (0) 1 d ? t for any d P D.

(4.5) For any function f : D ® Tm M, there exists a unique t P Tm M
such that f (d ) 5 f (0) 1 d ? t for any d P D.

Proof. As in Lavendhomme (1996, §§3.1, Proposition 3.2). n

Now we define the even tangent space T0
m M of M at m to be the set of

functions t: D ® M with t(0) 5 m. It is endowed with a left R e-module

structure by decreeing that for any a P R e, any t, t1, t2 P T0
m M, and any

d P D,

(4.6) (a ? t)(d ) 5 t(ad )

(4.7) (t1 1 t2)(d ) 5 l02

(t1,t2)(d, d )
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Proposition 4.3. With the above operations the set T0
m M is a left R e-

module.

Proof. As in Lavendhomme (1996, §3.1, Proposition 1). n

Similarly we define the odd tangent space T1
m M of M at m to be the

set of functions t: D ® M with t(0) 5 m. It is endowed with an R e-module

structure by decreeing that for any a P R e, any t, t1, t2 P T 1
m M, and any

d P D,

(4.8) (a ? t)(d ) 5 t(ad )
(4.9) (t1 1 t2)(d ) 5 l12

(t1,t2)(d, d )

Proposition 4.4. With the above operations the set T1
m M is a left R e-

module.

Proof. As in Lavendhomme (1996, §3.1, Proposition 1). n

The injections i0,1
1 : D ® D(0, 1) and i0,1

2 : D ® D(0, 1) induce functions

pe: Tm M ® T 0
m M and po: Tm M ® T 1

m M, respectively. The projections

p
0,1
1 : D(0, 1) ® D and p

0,1
2 : D(0, 1) ® D induce functions ie: T 0

m M ® Tm M
and io: T 1

m M ® Tm M, respectively. Then we have the following result:

Lemma 4.5. Tm M is a biproduct of T0
m M and T1

m M written the abelian

category of left R e-modules in the sense that

(4.10) pe + ie 5 1T0
m M

(4.11) po + io 5 1T1
m M

(4.12) ie + pe 1 io + po 5 1Tm M

Proof. Trivially (4.10) and (4.11) obtain. To see the validity of (4.12),

let t P Tm M. Then (ie + pe)(t)(d1, d2) 5 t(d1, 0) and (io + po)(t)(d1, d2) 5 t(0,

d2) for any (d1, d2) P D(0, 1). Consider l : D(0, 1, 0, 1) ® M such that l (d1,
d2, d3, d4) 5 t(d1, d4) for any (d1, d2, d3, d4) P D(0, 1, 0, 1). Then it is easy

to see that l (d1, d2, 0, 0) 5 (ie + pe)(t)(d1, d2) and l (0, 0, d1, d2) 5 (io +
po)(t)(d1, d2) for any (d1, d2) P D(0, 1). Therefore (ie + pe 1 io + po)(d1, d2)

5 l (d1, d2, d1, d2) 5 t(d1, d2) for any (d1, d2) P D(0, 1). This completes

the proof. n

In the following T0
m M and T1

m M are regarded as R e-submodules of Tm M
in the above sense.

Proposition 4.6. With operations (4.1)±(4.3) the set Tm M is an R -

supermodule with (Tm M )e 5 T0
m M and (Tm M )o 5 T1

m M.

Proof. This follows easily from Proposition 4.1 and Lemma 4.5. n

If M is R e and R o, then the R -supermodule Tm M is easily seen to be

canonically isomorphic to R , where 1 P R corresponds to the even tangent
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supervector d P D j m 1 d or to the odd tangent supervector d P D j

m 1 d according as M is R e or R o.

We set T0M 5 ø m8 P MT0
m8M and T1M 5 ø m8 P MT1

m8M.
A supervector field on M is a tangent supervector to M M at 1M , i.e., it

is an assignment X of an infinitesimal transformation X (d1,d2): M ® M to each

(d1, d2) P D(0, 1). The totality of supervector fields on M is denoted by

x (M ). The R -supermodule x (M ) can be decomposed into its even and odd

parts, which are denoted by x 0(M ) and x 1(M ), respectively. An even supervec-

tor field on M can be identified with an assignment X of an infinitesimal
transformation Xd: M ® M to each d P D with Xo 5 1M , while an odd

supervector field on M can be reckoned as an assignment X of an infinitesimal

transformation Xd : M ® M to each d P D with Xo 5 1M .

Given two pure supervector fields X, Y on M, we now define their Lie

bracket [X, Y ] by Corollary 2.4 as follows:

(4.13) If X P x 0(M ) and Y P x 0(M ), then [X, Y ] is the unique even

supervector field on M such that [X, Y ]d1d2 5 Y 2 d2 + X 2 d1 +
Yd2 + Xd1 for any d1, d2 P D

(4.14) If X P x 0(M ) and Y P x 1(M ), then [X, Y ] is the unique odd

supervector field on M such that [X, Y ]d1d2 5 Y 2 d2 + X 2 d1 +
Yd2 + Xd1 for any d1 P D and any d2 P D

(4.15) If X P x 1(M ) and Y P x 0(M ), then [X, Y ] is the unique odd

supervector field on M such that [X, Y ]d1d2 5 Y 2 d2 + X 2 d1 +
Yd2 + Xd1 for any d1 P D and any d2 P D

(4.16) If X P x 1(M ) and Y P x 1(M ), then [X, Y ] is the unique even

supervector field on M such that [X, Y ]d1d2 5 Y 2 d2 + X 2 d1 +
Yd2 + Xd1 for any d1, d2 P D

Once the Lie bracket of any two pure supervector fields on M is defined,

we can define the Lie bracket [X, Y ] of two nonpure supervector fields X,

Y on M by the following formula:

(4.17) [X, Y ] 5 [Xe, Ye] 1 [Xe, Yo] 1 [Xo, Ye] 1 [Xo, Yo]

The proof of the following theorem is relegated to the succeeding section.

Theorem 4.6. x (M ) is a Lie superalgebra.

5. SUPERMICROSQUARES AND SUPERMICROCUBES

The main objective of this section is to discuss fundamental properties

of microsquares and microcubes in our supercontext and apply them to Lie

brackets of supervector fields.
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A supermicrosquare of type (p, q) on M at m is a function a from

Dp 3 Dq to M with a (0, 0) 5 m. The totality of supermicrosquares of type

(p, q) on M at m is denoted by Tp,q
m M, and we set Tp,qM 5 ø m8 P MTp,q

m8 M.

Lemma 5.1. The diagram

i
D(p, q) Ð Ð Ð Ð ® Dp 3 Dq

½
½
¯

½
½
¯

i c p ,q

Dp 3 Dq Ð Ð ® (Dp 3 Dq) Ú Dp 1 q

w p ,q

is a quasi-colimit diagram of supersmall objects, where

(5.1) (Dp 3 Dq) Ú Dp 1 q 5 {(d1, d2, d3) P Dp 3 Dq 3 Dp 1 q ) d1d3 5
d2d3 5 0}

(5.2) w p,q(d1, d2) 5 (d1, d2, 0) for any (d1, d2) P Dp 3 Dq

(5.3) c p,q(d1, d2) 5 (d1, d2, d1d2) for any (d1, d2) P Dp 3 Dq

Proof. As in Lavendhomme (1996, §3.4, pp. 92±93, Lemma). n

Proposition 5.2. For any a 1, a 2 P Tp,qM, if a 1 ) D(p,q) 5 a 2 ) D(p,q), then

there exists a unique function gp,q
( a 1, a 2): (Dp 3 Dq) Ú Dp 1 q ® M such that

gp,q
( a 1, a 2) + w p,q 5 a 1 and gp,q

( a 1, a 2) + c p,q 5 a 2. In this case we define a pure

tangent supervector a 2
?

p, q
a 1 to M as follows, where it is even if p 1 q 5

0 and odd if p 1 q 5 1:

(5.4) 1 a 2
?

p, q
a 1 2 (d ) 5 gp,q

( a 1, a 2)(0, 0, d ) for any d P Dp 1 q

Proof. This follows from Lemma 5.1. n

Proposition 5.3. For any a 1, a 2 P Tp,q
m M with a 1 ) D(p,q) 5 a 2 ) D(p,q), we have

(5.5) a 1
?

p, q
a 2 5 2 1 a 2

?
p, q

a 1 2
Proof. We define h: (Dp 3 Dq) Ú Dp 1 q ® M as follows:

(5.6) h(d1, d2, d3) 5 gp,q
( a 1, a 2)(d1, d2, d1d2 2 d3) for any (d1, d2, d3) P

(Dp 3 Dq) Ú Dp 1 q

Then it is easy to see that h + w p,q 5 a 2 and h + c p,q 5 a 1. Therefore h 5
g

p,q
( a 2, a 1), which implies (5.5). n
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For any a P Tp,q
m M, we define S ( a ) P Tp,q

m M to be

(5.7) S ( a )(d1, d2) 5 a (d2, d1) for any (d1, d2) P Dq 3 Dp

The following proposition, which reveals the underlying structure of the

graded anticommutativity of supervector fields with respect to Lie brackets,
strongly reminds us that we now dwell in a world where commutativity is

no longer a dictum.

Proposition 5.4. For any a 1, a 2 P Tp,q
m M with a 1 ) D(p,q) 5 a 2 ) D(p,q), we have

(5.8) S ( a 1) ) D(q,p) 5 S ( a 2) ) D(q,p)

(5.9) S ( a 2)
?

q, p
S ( a 1) 5 ( 2 1)pq 1 a 2

?
p, q

a 2 2
Proof. Let us define h: (Dq 3 Dp) Ú Dp 1 q ® M as follows:

(5.10) h(d1, d2, d3) 5 gp,q
( a 1, a 2)(d2, d1, ( 2 1)pqd3) for any (d1, d2, d3) P

(Dq 3 Dp) Ú Dp 1 q

Then it is easy to see that h + w q,p 5 S ( a 1) and h + c q,p 5 S ( a 2), whence
(5.9) follows. n

Now we discuss a super version of the microcube. A supermicrocube
of type (p, q, r) on M at m is a function g from Dp 3 Dq 3 Dr to M with

a (0, 0, 0) 5 m. The totality of supermicrocubes of type (p, q, r) on M at m
is denoted by Tp,q,r

m M, and we set Tp,q,rM 5 ø m8 P MTp,q,r
m8 M.

Now we relativize the partial binary operation
?

q, r
to Tp,q,rM. As we

discussed in Nishimura (1998c, §§1.3), we can do so by regarding Tp,q,rM
either as Tp(Tq,rM ) or as Tq,r(TpM ). Fortunately both approaches result in

the same partial operation
i

p, q, r
; given g 1, g 2 P Tp,q,rM, g 2

i

p, q, r
g 1 is defined

iff g 1 ) Dp 3 D(q,r) 5 g 2 ) Dp 3 D(q,r), in which it is a supermicrosquare of type

(p, q 1 r) on M.

Let Perm3 denote the group of permutations of the set {1, 2, 3}. Given

g P Tp1,p2,p3M and r P Perm3, we define S r ( g ) P Tp r 2 1
(1),p r 2 1

(2),p r 2 1
(3)M

as follows:

(5.11) S r ( g )(d1, d2, d3) 5 g (d r (1), d r (2), d r (3)) for any (d1, d2, d3) P
Dp r 2 1

(1) 3 Dp r 2 1
(2) 3 Dp r 2 1

(3)

Now we define partial binary operations
2Ç

p, q, r
and

3Ç

p, q, r
in Tp,q,rM as

follows:
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(5.12) g 2
2Ç

p, q, r
g 1 is defined iff

S (132)( g 2)
i

q, r, p
S (132)( g 1) is defined, in which

the former is defined to be the latter.

(5.13) g 2
3Ç

p, q, r
g 1 is defined iff

S (132)( g 2)
i

r, p, q
S (123)( g 1) is defined, in which

the former is defined to be the latter.

The following theorem reveals the underlying structure of the graded

Jacobi identity of Lie brackets of supervector fields.

Theorem 5.5. Let g 123, g 132, g 213, g 231, g 312, g 321 P Tp,q,r
m M. Let us

suppose that the following three expressions are well defined:

(5.14) 1 g 123
i

p, q, r
g 132 2 ?

p, q 1 r 1 g 231
i

p, q, r
g 321 2

(5.15) 1 g 231
2Ç

p, q, r
g 213 2 ?

q, p 1 r 1 g 312
2Ç

p, q, r
g 132 2

(5.16) 1 g 312
3Ç

p, q, r
g 321 2 ?

r, p 1 q 1 g 123
3Ç

p, q, r
g 213 2

Letting d 1, d 2, and d 3 denote the above three expressions in order, we have

(5.17) d 1 1 ( 2 1)p(q 1 r) d 2 1 ( 2 1)(p 1 q)r d 3 5 0

Proof. As in Nishimura (1997b, §3). n

Now we apply the above theory of supermicrosquares and supermicro-

cubes to Lie brackets of vector fields. We denote by x p,q(M ) the totality of
supermicrosquares on M M at 1M . We denote by x p,q,r(M ) the totality of

supermicrocubes on M M at 1M . Given X P x p(M ), Y P x q(M ), and Z P
x r(M ), we define Y * X P x p,q and Z * Y * X P x p,q,r(M ) as follows:

(5.18) (Y * X )(d1, d2) 5 Yd2 + Xd1 for any (d1, d2) P Dp 3 Dq

(5.19) (Z * Y * X )(d1, d2, d3) 5 Zd3 + Yd2 + Xd1 for any (d1, d2, d3)
P Dp 3 Dq 3 Dr

Proposition 5.6. Let X P x p(M ) and Y P x q(M ). Then we have

(5.20) [X, Y ] 5 Y * X
?

p, q
S (X * Y )
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Proof. As in Lavendhomme (1996, §3.4, Proposition 8). n

Theorem 5.7. Let X P x p(M ) and Y P x q(M ). Then we have

(5.21) [X, Y ] 5 2 ( 2 1)pq[Y, X ]

Proof. We have

[X, Y ]

5 Y * X
?

p, q
S (X * Y )

5 2 1 S (X * Y )
?

p, q
Y * X 2 [Proposition 5.3]

5 2 ( 2 1)pq 1 X * Y
?

q, p
S (Y * X ) 2 [Propositiona 5.4]

5 2 ( 2 1)pq[Y, X ] n

Proposition 5.8. Let X P x p(M ), Y P x q(M ), and Z P x r(M ). Let it be

the case that

(5.22) g 123 5 Z * Y * X
(5.23) g 132 5 S (23)(Y * Z * X )

(5.24) g 213 5 S (12)(Z * X * Y )

(5.25) g 231 5 S (123)(X * Z * Y )

(5.26) g 312 5 S (132)(Y * X * Z )
(5.27) g 321 5 S (13)(X * Y * Z )

Then the right-hand sides of the following three identities are meaningful,

and all the three identities hold:

(5.28) [X, [Y, Z ]]

5 1 g 123
i

p, q, r
g 132 2 ?

p, q 1 r 1 g 231
1Ç

p, q, r
g 321 2

(5.29) [Y, [Z, X ]]

5 1 g 231
2Ç

p, q, r
g 213 2 ?

q, p 1 r 1 g 312
2Ç

p, q, r
g 132 2

(5.30) [Z, [X, Y ]]

5 1 g 312
3Ç

p, q, r
g 321 2 ?

r, p 1 q 1 g 123
3Ç

p, q, r
g 213 2

Proof. As in Nishimura (1997b, Proposition 2.7). n
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Theorem 5.9. Let X P x p(M ), Y P x q(M ), and Z P x r(M ). Then

(5.31) [X, [Y, Z ]] 1 ( 2 1)p(q 1 r)[Y, [Z, X ]]

1 ( 2 1)(p 1 q)r[Z, [X, Y ]] 5 0

Proof. Follows from Theorem 5.5 and Proposition 5.8. n

We conclude this section by remarking that Theorems 5.7 and 5.9 consti-

tute a proof of Theorem 4.6.

Note added in proof

After finishing this paper, we got acquainted with the following paper,
which should be put down as a precursor of ours. Yetter, D. N. (1988).

Models for synthetic supergeometry, Cahiers Topologie GeÂomeÂtrie DiffeÂr-
entielle CateÂgoriques, 29, 87±108.
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